1

Itcca Presentation 09

New Trends in Sprinter training

By Chris Korfist

Fly 30's

- Longest distance someone can hold a max velocity sprint is 30m- Most top sprinter can get 20.
- Too far for us- we start at fly 10's and gradually move up from there

	Ben '88	Carl '88	Mo '99	Mo '01	Tim '02	Asafa '05	BOLT '08
RT	0.132	0.136	0.162	0.132	0.104	0.150	0.165
0-10m	1.83	1.89	1.86	1.83	1.89	1.89	1.85
10-20m	1.04	1.07	1.03	1.00	1.03	1.02	1.02
20-30m	0.93	0.94	0.92	0.92	0.91	0.92	0.91
30-40m	0.86	0.89	0.88	0.89	0.87	0.86	0.87
40-50m	0.84	0.86	0.88	0.86	0.84	0.85	0.85
50-60m	0.83	0.83	0.83	0.83	0.83	0.85	0.82
60-70m	0.84	0.85	0.83	0.83	0.84	0.84	0.82
70-80m	0.85	0.85	0.86	0.86	0.84	0.84	0.82
80-90m	0.87	0.86	0.85	0.89	0.85	0.85	0.83
90-100m	0.90	0.88	0.85	0.91	0.88	0.85	0.90
TIME	9.79	9.92	9.79	9.82	9.78	9.77	9.69
			Courtesy o	f SpeedEn	durance.c	om	

- We start with 10m and work up to 30m
- To work on endurance we repeat the 30's with a walk or jog back

Tempo runs

- We don't practice running slow
- · Most of our races or anaerobic capacity
- 100m 15-20% aerobic
- 200m- 20-25% aerobic
- 400m-40-45% aerobic
- Females more aerobic than males
- Does your training model the requirements?

8x200's?

- Goal to improve lactic acid toleration
- Highest point 6 min after run
- Blood lactate reaches highest point at 27 sec
- Takes 8 minutes for Creatine phosphate to replenish

 Aziz AR, Chia M, Teh KC.

 Sport Medicine & Fitness Division, Singapore Sports Council, Singapore. Abdul-Rashid-Aziz @ssc.gov.sg

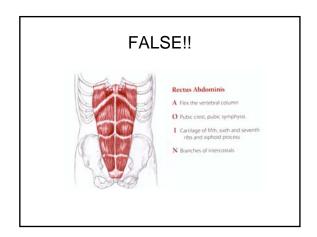
• Maximal oxygen uptake was not correlated with the fastest 40 m sprint time but was moderately correlated with total sprint time. Since the shared variance between maximal oxygen uptake and total sprint time was only 12%, improving aerobic fitness further will only be expected to contribute marginally to improving repeated sprint performance of the team game players

Sample workout

- Monday
- Flys
- Drops
- Fast feet-line hops, tramp runs for 30 sec

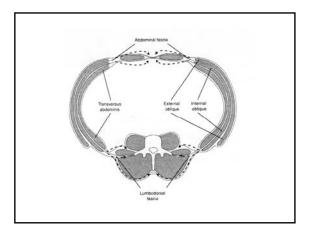
Wednesday

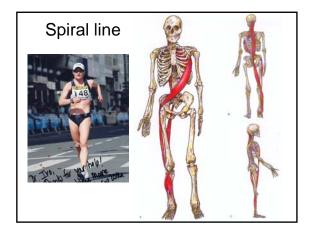
- Block 30's or curves
- bounds

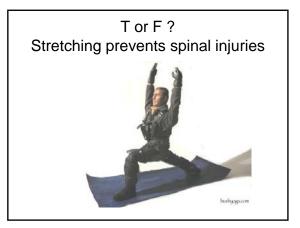

Saturday

23 sec runs

Core work

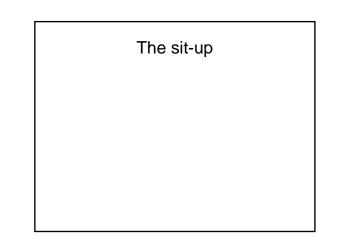

T or F ? The rectus abdominus is an important core muscle





What are the "Core" muscles?

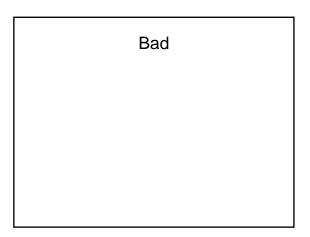
- Internal and external abdominal obliques
- Gluteus maximus and medius
- Lumbar erectors
- Latissimus dorsi
- Quadratus Lumborum
- Multifidus and rotatores

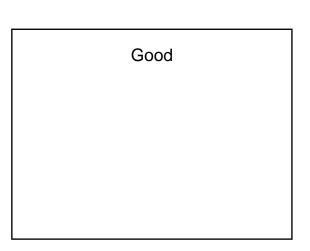


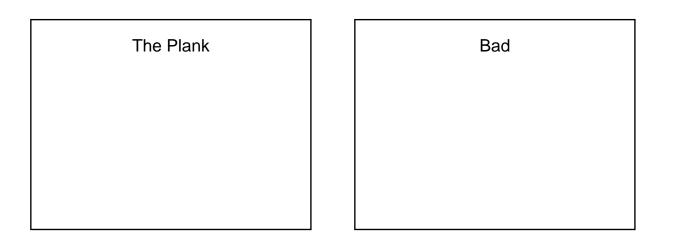


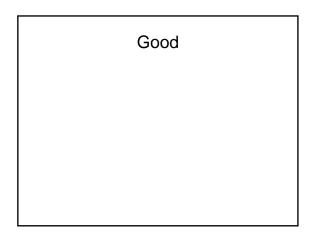
FALSE!!!

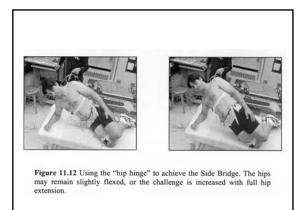
- Hamstring tightness NOT linked to LBP
 Biering Sorenson 1984, Hellsing 1988
- Spine ROM has little to do with function at work
 Parks, et al 2003
- Static stretching of the spine can cause muscle spasm and diminishes the stretch reflex
 – Solomonow 2003
- Initial static stretches can decrease subsequent coordination by resetting some of the muscle and joint proprioceptors

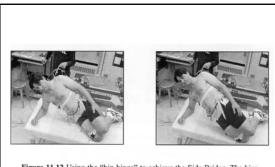
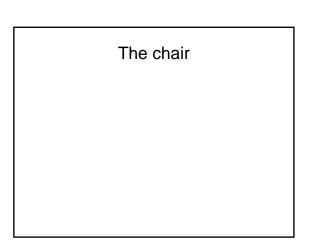
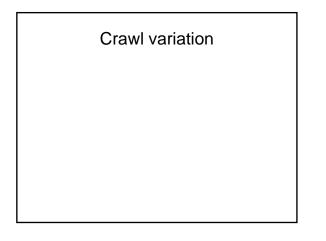
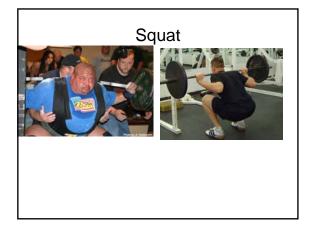

 Drabek 1996

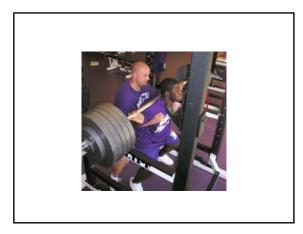




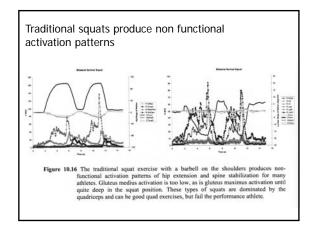

	x., Axler an	d McGill, 29 (6)	Reprinted : 804-811, 19	197.			
	Muscle Activation						
	Moment (Nm)	Rectus Abdominis (% MVC)	External Oblique	Compression (N)			
Straight Leg Situp	148	121	70	3506			
Bent Leg Situp	154	103	70	3350			
Curlup feet Anchored	92	87	45	2009			
Curlup Feet Free	81	67	3.8	1991			
Quarter Situp	114	78	42	2392			
Straight Leg Raise	102	57	35	2525			
Bent Leg Raise	82	35	24	1767			
Cross-knee Curlup	112	89	67	2964			
Hanging Straight Leg	107	112	90	2805			
Hanging Bent Leg	84	78	64	3313			
Isometric Side Bridge	72	48	50	2585			

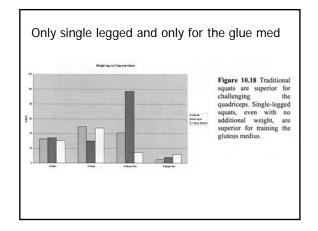

Table 4.2

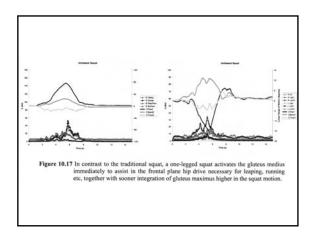





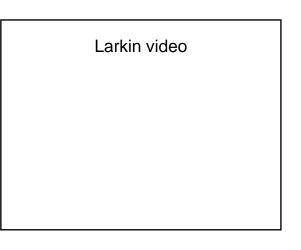

Figure 11.12 Using the "hip hinge" to achieve the Side Bridge. The hips may remain slightly flexed, or the challenge is increased with full hip extension.

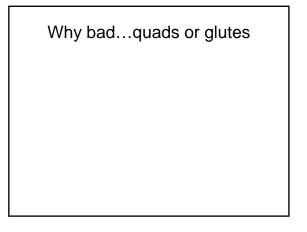
Towel Variation

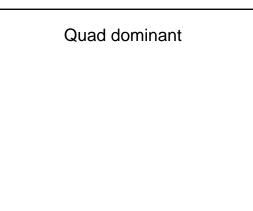


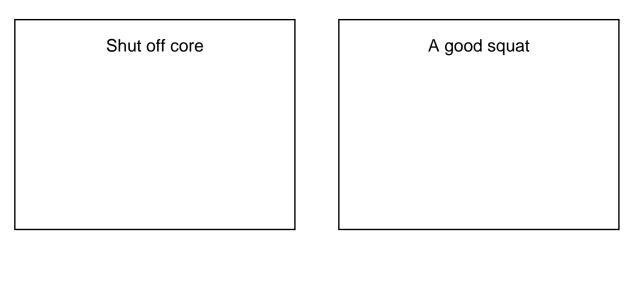


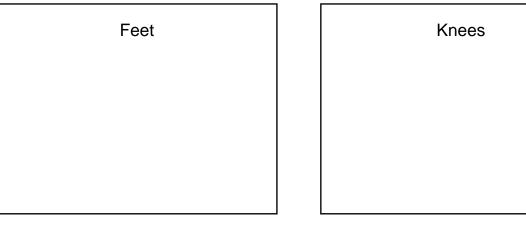


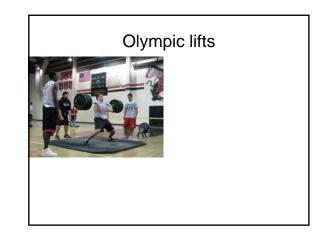



• Traditional squats train the quadriceps









Lower back

12/5/2008

Alternatives

Deadlift

Single leg/split leg exercises

Isometrics

Plyometrics

Going up...?

Or...going down

Fichter graph

Comparison of loaded and unloaded jump squat training on strength/power performance in college football players. <u>Hoffman JR, Ratamess NA, Cooper JJ, Kang J, Chilakos A, Faigenbaum</u>

AD. Department of Health and Exercise Science, The College of New Jersey, Ewing, New Jersey 08628-0718, USA. hoffmanj@tcnj.edu

 the eccentric phase of this ballistic movement appears to have important implications for eliciting these strength gains in college football players during an off-season training program

Stretching

- 20m-sprint performance in trained rugby union players can be improved by using an
- active dynamic stretch protocol, while the use of static stretching appears to decrease
- 20m-sprint performance (static dynamic stretching was found to have no significant
- effect on performance). Coaches and athletes need to be aware of the potentially
- negative effects of both passive and active static stretching on immediate performance
- of short sprints and the potential positive effect of doing specific movement pattern
- rehearsal (active dynamic stretching) before performance.

Static stretching impairs sprint performance in collegiate track and field athletes Autores: Jason B. Winchester, C. Schexnayder Localización: Journal of strength Arnold Nelson, Dennis Landin, Michael A. Young Invite and conditioning research: the research injurgal of the NSCA

Young, Irving and conditioning research: the research journal of the NSCA, ISSN 1064-8011, Vol. 22, Nº. 1, 2008 , pags. 13-18

 The results of this study suggest that performing a SS protocol following a DW will inhibit sprint performance in collegiate athletes.

Acute effects of passive muscle stretching on sprint performance Authors: Nelson, Arnold;: Driscoll, Nicole<u>1</u>; Landin, Dennis<u>1</u>; Young, Michael<u>1</u>; Schexnayder, Irving<u>2</u> Source: Journal of Sports Sciences, Volume 23, Number 5, Number 5/May 2005, pp. 449-454(6) Publisher: Taylor and Francis Ltd

 Thus, it appears that pre-event stretching might negatively impact the performance of high-power short-term exercise The effect of static stretching on phases of sprint performance in elite soccer players. <u>Savers AL, Farler RS, Fuller DK, Jubenville CB, Caputo JL</u>. Middle Tennessee State University, Murfreesboro, USA. asayers@mtsu.edu

• Static stretching before sprinting resulted in slower times in all three performance variables. These findings provide evidence that static stretching exerts a negative effect on sprint performance and should not be included as part of the preparation routine for physical activity that requires sprinting.

Form drills

Why Not?

- Form is an expression of what is working
- Athlete will default to pattern where they are strong
- Form drill will not fix a weakness
- Could be strengthening a poor pattern